MCS 452 MT1 Questions

1) Consider the metric space $(C[0,1], d)$ where

$$
d(f, g)=\int_{0}^{1}|f(x)-g(x)| d x
$$

Let $f(x)=e^{-x}$ for $x \in[0,1]$.
i) Write the open ball $B_{d}(f, 1)$ explicitly as a set,
ii) Which of the following functions in $C[0,1]$ are in $B_{d}(f, 1)$?
a) $g(x)=0$
b) $g(x)=1$

Are any of these functions in $B_{d}(f, 1 / 2)$? Justify your answers by explicit calculations.
2) a) Show that

$$
d_{2}\left(\left(x_{n}, y_{n}\right),(a, b)\right) \leq \sqrt{2} \cdot d_{\infty}\left(\left(x_{n}, y_{n}\right),(a, b)\right)
$$

with the usual metric d_{2} and the maximum metric
$d_{\infty}\left(\left(x_{n}, y_{n}\right),(a, b)\right)=\max \left\{\left|x_{n}-a\right|,\left|y_{n}-b\right|\right\}$.
b) Prove that a sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ converges to the limit $(a, b) \in \mathbb{R}^{2}$ using the usual metric d_{2} if and only if it converges with respect to the metric $d_{\infty}=\max \left\{\left|x_{n}-a\right|,\left|y_{n}-b\right|\right\}$.
3) The Euclidean metric d on \mathbb{R}^{n} is defined by

$$
d(x, y)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\ldots\left(x_{n}-y_{n}\right)^{2}}
$$

for $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right), y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$.
a) Consider $\left(\mathbb{R}^{3}, d\right)$. Show that the sequence whose $n^{\text {th }}$ term is $\left(x_{n}, y_{n}, z_{n}\right)$ converges to (x, y, z) as $n \rightarrow \infty$ in the metric space $\left(\mathbb{R}^{3}, d\right)$ if and only if , $\lim _{n \rightarrow \infty} x_{n}=x, \lim _{n \rightarrow \infty} y_{n}=$ $y, \lim _{n \rightarrow \infty} z_{n}=z$.
b) Find the limit in $\left(\mathbb{R}^{3}, d\right)$ of the sequence whose $n^{\text {th }}$ term is

$$
\left(\cos \left(\frac{3}{n+1}\right), \ln \left(\frac{n+5}{n}\right), \frac{3 n+1}{n+2}\right)
$$

and calculate the distance between this limit and the origin.
4) On $C[0,1]$ define the operator T by

$$
(T x)(s)=s^{2} \int_{0}^{1} x(t) d t
$$

where $x \in C[0,1]$ and $s \in[0,1]$. Show that T is linear and find $\|T\|$.

